14 research outputs found

    Deep learning for quality control of surface physiographic fields using satellite Earth observations

    Full text link
    A purposely built deep learning algorithm for the Verification of Earth-System ParametERisation (VESPER) is used to assess recent upgrades of the global physiographic datasets underpinning the quality of the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF), which is used both in numerical weather prediction and climate reanalyses. A neural network regression model is trained to learn the mapping between the surface physiographic dataset plus the meteorology from ERA5, and the MODIS satellite skin temperature observations. Once trained, this tool is applied to rapidly assess the quality of upgrades of the land-surface scheme. Upgrades which improve the prediction accuracy of the machine learning tool indicate a reduction of the errors in the surface fields used as input to the surface parametrisation schemes. Conversely, incorrect specifications of the surface fields decrease the accuracy with which VESPER can make predictions. We apply VESPER to assess the accuracy of recent upgrades of the permanent lake and glaciers covers as well as planned upgrades to represent seasonally varying water bodies (i.e. ephemeral lakes). We show that for grid-cells where the lake fields have been updated, the prediction accuracy in the land surface temperature (i.e mean absolute error difference between updated and original physiographic datasets) improves by 0.37 K on average, whilst for the subset of points where the lakes have been exchanged for bare ground (or vice versa) the improvement is 0.83 K. We also show that updates to the glacier cover improve the prediction accuracy by 0.22 K. We highlight how neural networks such as VESPER can assist the research and development of surface parameterizations and their input physiography to better represent Earth's surface couples processes in weather and climate models.Comment: 26 pages, 16 figures. Submitted to Hydrology and Earth System Sciences (HESS

    Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement

    Get PDF
    The CO2 Human Emissions project has generated realistic high-resolution 9 km global simulations for atmospheric carbon tracers referred to as nature runs to foster carbon-cycle research applications with current and planned satellite missions, as well as the surge of in situ observations. Realistic atmospheric CO2, CH4 and CO fields can provide a reference for assessing the impact of proposed designs of new satellites and in situ networks and to study atmospheric variability of the tracers modulated by the weather. The simulations spanning 2015 are based on the Copernicus Atmosphere Monitoring Service forecasts at the European Centre for Medium Range Weather Forecasts, with improvements in various model components and input data such as anthropogenic emissions, in preparation of a CO2 Monitoring and Verification Support system. The relative contribution of different emissions and natural fluxes towards observed atmospheric variability is diagnosed by additional tagged tracers in the simulations. The evaluation of such high-resolution model simulations can be used to identify model deficiencies and guide further model improvements.The Copernicus Atmosphere Monitoring Service is operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission as part of the Copernicus Programme (http://copernicus.eu). The CHE and CoCO2 projects have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 776186 and No 958927. We also thank the FLUXNET and TCCON PIs for providing the data used for the validation of the nature run dataset.Peer Reviewed"Article signat per 27 autors/es: Anna Agustí-Panareda, Joe McNorton, Gianpaolo Balsamo, Bianca C. Baier, Nicolas Bousserez, Souhail Boussetta, Dominik Brunner, Frédéric Chevallier, Margarita Choulga, Michail Diamantakis, Richard Engelen, Johannes Flemming, Claire Granier, Marc Guevara, Hugo Denier van der Gon, Nellie Elguindi, Jean-Matthieu Haussaire, Martin Jung, Greet Janssens-Maenhout, Rigel Kivi, Sébastien Massart, Dario Papale, Mark Parrington, Miha Razinger, Colm Sweeney, Alex Vermeulen & Sophia Walther "Postprint (published version

    Attribution of global lake systems change to anthropogenic forcing

    Get PDF
    Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide

    The CO2 Human Emissions (CHE) Project: First steps towards a European operational capacity to monitor anthropogenic CO2 emissions

    Get PDF
    The Paris Agreement of the United Nations Framework Convention on Climate Change is a binding international treaty signed by 196 nations to limit their greenhouse gas emissions through ever-reducing Nationally Determined Contributions and a system of 5-yearly Global Stocktakes in an Enhanced Transparency Framework. To support this process, the European Commission initiated the design and development of a new Copernicus service element that will use Earth observations mainly to monitor anthropogenic carbon dioxide (CO2) emissions. The CO2 Human Emissions (CHE) project has been successfully coordinating efforts of its 22 consortium partners, to advance the development of a European CO2 monitoring and verification support (CO2MVS) capacity for anthropogenic CO2 emissions. Several project achievements are presented and discussed here as examples. The CHE project has developed an enhanced capability to produce global, regional and local CO2 simulations, with a focus on the representation of anthropogenic sources. The project has achieved advances towards a CO2 global inversion capability at high resolution to connect atmospheric concentrations to surface emissions. CHE has also demonstrated the use of Earth observations (satellite and ground-based) as well as proxy data for human activity to constrain uncertainties and to enhance the timeliness of CO2 monitoring. High-resolution global simulations (at 9 km) covering the whole of 2015 (labelled CHE nature runs) fed regional and local simulations over Europe (at 5 km and 1 km resolution) and supported the generation of synthetic satellite observations simulating the contribution of a future dedicated Copernicus CO2 Monitoring Mission (CO2M

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Towards improved objective analysis of lake surface water temperature in a NWP model: preliminary assessment of statistical properties

    No full text
    Information about the statistical structure of the lake surface water temperature (LSWT) field is needed for assimilation of lake observations into Numerical Weather Prediction (NWP) models, to describe the lake surface state at each grid-point containing lakes. In this study, we obtain the autocorrelation function for LSWT from two types of observations, in situ and satellite-based. We use summer time measurements during 2010–2014 over selected Fennoscandian lakes and Northern European domain. The estimated autocorrelations decrease exponentially (from 0.99 to 0.73 for in situ and from 0.97 to 0.61 for satellite observations), when the distance between observations increases from zero to one thousand kilometres .A large difference in lake depth leads to a decrease of the correlation. Typical error standard deviation of LSWT observations was found to be 0.9 ^{\,\circ } C for in situ observations and 1.2 ^{\,\circ } C for satellite observations. The exponential approximation for the LSWT autocorrelation functions is proposed, which depends on both the distance and the difference in lake depth. These results are directly applicable for the LSWT objective analysis in NWP. New autocorrelation functions, which allow interpolation of observations within and between lakes, were used in numerical experiments with the High-Resolution Limited Area Model (HIRLAM). In this preliminary assessment, we suggest adaptation of the presently used functions by increasing the influence radius and taking into account the lake depth difference. Generalization of the results to cover the melting and freezing seasons, their assessment for different geographical areas as well as their application to other prognostic lake variables within NWP are foreseen

    Parametrization of lakes water dynamics in the ISBA-CTRIP land surface system (SURFEX v8.1)

    No full text
    Abstract. Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. They also modify the local hydro-meteorological continuum as a lower boundary of the atmosphere. Sentinels of climate change and anthropization, these open water bodies are facing disruptions of their equilibrium generally leading to a notable reduction of their levels worldwide. Stream-flow variability and temporal evolution are impacted by the presence of lakes in the river network, therefore any change in the lake state can induce a modification of the regional hydrological regime. Despite the importance of the impact of lakes on hydrological fluxes and the water balance, a representation of the mass budget is generally not included in climate models and global scale hydrological modeling platforms. The goal of this study is to introduce a new lake mass module, MLake (Mass-Lake model), into the river routing model CTRIP to resolve the specific mass-balance of open water bodies. Based on the inherent CTRIP parameters, the development of the non-calibrated MLake model was introduced to examine the influence of such hydrological buffer areas on the global scale river routing performances. In the current study, an off-line evaluation was performed for four river networks using a set of state-of-the-art quality atmospheric forcings and a combination of in situ and satellite measurements for river discharge and lake level observations. The results reveal a general improvement in CTRIP simulated discharge and its variability, while also generating realistic lake level variations. MLake produces more realistic streamflows both in terms of daily and seasonal correlation. Excluding the specific case of Lake Victoria having low performances, the mean skill score of Kling-Gupta Efficiency (KGE) is 0.41 while the Normalized Information Contribution (NIC) shows a mean improvement of 0.56 (ranging from 0.15 to 0.94). Streamflow results are spatially scale-dependent, with better scores associated with larger lakes, and increased sensitivity to the width of the lake outlet. Regarding lake levels variations, results indicate a good agreement between observations and simulations with a mean correlation of 0.56 (ranging from 0.07 to 0.92) which is linked to the capability of the model to retrieve seasonal variations. Discrepancies in the results are mainly explained by the anthropization of the selected lakes which introduces high-frequency variations in both streamflows and lake levels that degraded the scores. Anthropization effects are prevalent in most of the lakes studied, but they are predominant for Lake Victoria and are the main cause for relatively low statistical scores for this river. However, results on the Angara and the Neva rivers also depend on the inherent gap of ISBA-CTRIP processes representation which relies on further development such as the partitioned energy budget between the snow and the canopy over a Boreal zone. The study is a first step towards a global coupled land system that will help to qualitatively assess the evolution of future global water resources leading to improvements in flood risk and drought forecasting.Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. They also modify the local hydro-meteorological continuum as a lower boundary of the atmosphere. Sentinels of climate change and anthropization, these open water bodies are facing disruptions of their equilibrium generally leading to a notable reduction of their levels worldwide. Stream-flow variability and temporal evolution are impacted by the 5 presence of lakes in the river network, therefore any change in the lake state can induce a modification of the regional hydrological regime. Despite the importance of the impact of lakes on hydrological fluxes and the water balance, a representation of the mass budget is generally not included in climate models and global scale hydrological modeling platforms. The goal of this study is to introduce a new lake mass module, MLake (Mass-Lake model), into the river routing model CTRIP to resolve the specific mass-balance of open water bodies. Based on the inherent CTRIP parameters, the development of the non-calibrated 10 MLake model was introduced to examine the influence of such hydrological buffer areas on the global scale river routing performances. In the current study, an off-line evaluation was performed for four river networks using a set of state-of-the-art quality atmospheric forcings and a combination of in situ and satellite measurements for river discharge and lake level observations. The results reveal a general improvement in CTRIP simulated discharge and its variability, while also generating realistic lake 15 level variations. MLake produces more realistic streamflows both in terms of daily and seasonal correlation. Excluding the specific case of Lake Victoria having low performances, the mean skill score of Kling-Gupta Efficiency (KGE) is 0.41 while the Normalized Information Contribution (NIC) shows a mean improvement of 0.56 (ranging from 0.15 to 0.94). Streamflow results are spatially scale-dependent, with better scores associated with larger lakes, and increased sensitivity to the width of the lake outlet. Regarding lake levels variations, results indicate a good agreement between observations and simulations with 20 a mean correlation of 0.56 (ranging from 0.07 to 0.92) which is linked to the capability of the model to retrieve seasonal variations. Discrepancies in the results are mainly explained by the anthropization of the selected lakes which introduces high-frequency variations in both streamflows and lake levels that degraded the scores. Anthropization effects are prevalent in most of the lakes studied, but they are predominant for Lake Victoria and are the main cause for relatively low statistical scores for this river. However, results on the Angara and the Neva rivers also depend on the inherent gap of ISBA-CTRIP processes 25 1 https://doi. representation which relies on further development such as the partitioned energy budget between the snow and the canopy over a Boreal zone. The study is a first step towards a global coupled land system that will help to qualitatively assess the evolution of future global water resources leading to improvements in flood risk and drought forecasting

    ECLand: The ECMWF Land Surface Modelling System

    No full text
    The land-surface developments of the European Centre for Medium-range Weather Forecasts (ECMWF) are based on the Carbon-Hydrology Tiled Scheme for Surface Exchanges over Land (CHTESSEL) and form an integral part of the Integrated Forecasting System (IFS), supporting a wide range of global weather, climate and environmental applications. In order to structure, coordinate and focus future developments and benefit from international collaboration in new areas, a flexible system named ECLand, which would facilitate modular extensions to support numerical weather prediction (NWP) and society-relevant operational services, for example, Copernicus, is presented. This paper introduces recent examples of novel ECLand developments on (i) vegetation; (ii) snow; (iii) soil; (iv) open water/lake; (v) river/inundation; and (vi) urban areas. The developments are evaluated separately with long-range, atmosphere-forced surface offline simulations and coupled land-atmosphere-ocean experiments. This illustrates the benchmark criteria for assessing both process fidelity with regards to land surface fluxes and reservoirs of the water-energy-carbon exchange on the one hand, and on the other hand the requirements of ECMWF’s NWP, climate and atmospheric composition monitoring services using an Earth system assimilation and prediction framework

    Attribution of global lake systems change to anthropogenic forcing

    No full text
    Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide
    corecore